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The parameters of heart rate variability and blood pressure variability have proved to be useful analytical
tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to
new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper,
we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonpara-
metric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measure-
ments of healthy persons and patients suffering from obstructive sleep apnea syndrome �OSAS�, with and
without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term
fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which
confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of
the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects
is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue
analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to
heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the
different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of
hypertension risk in OSAS patients.
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I. INTRODUCTION

The cardiovascular system often shows complicated tem-
poral, spatial, and spatiotemporal behavior which reflects the
complex interactions of many different inherent control
loops. Many cardiovascular diseases are characterized by dy-
namical changes. An early diagnosis of these dynamical dis-
eases often is desirable for successful treatment. Therefore,
the adequate quantification of the cardiovascular state and/or
regulation is essential. Cardiovascular physics is an interdis-
ciplinary research area which deals with the detailed descrip-
tion and classification of the cardiovascular system �1�. Lin-
ear and nonlinear analysis of heart rate variability �HRV� and
blood pressure variability �BPV� �2–7� as well as baroreflex
sensitivity �8,9� have proved to be highly promising indica-
tors for this topic. With their help, the prediction of preec-
lampsia �life-threatening blood pressure increase during
pregnancy� �10� was improved significantly, for instance.
Most of the parameters describe the cardiovascular state
where additionally nonlinear parameters of cardiovascular
physics lead to a more exact description of the complex HRV
and BPV �11–14� than linear ones only. The complexity of
the signals arises from many different overlapping control
loops in the cardiovascular regulation, for example the
baroreflex or the renin-angiotensin-aldosteron system.

Another approach to analyzing this complex system is
based on modeling of the complex HRV and BPV. The mod-
eling provides insights into the mechanisms of the cardiovas-
cular regulation and the estimated model parameters can be
used to quantify the control. Hence, linear modeling ap-

proaches �15–18� already resulted in the successful detection
of dysfunctions of cardiovascular regulation; however, vari-
ous typical nonlinear phenomena, e.g., synchronization or
amplitude-frequency coupling in the cardiovascular system,
have been observed and therefore must be regarded in the
modeling process. Cohen et al. �19� proposed a nonlinear
transformation of the inputs in order to describe known non-
linear phenomena of heart rate, e.g., saturations and thresh-
old effects or hysteresis. In recent years, nonlinear models
�20–27� have proved to be very efficient and necessary to
explain HRV and BPV. One of these models is a nonlinear
additive autoregressive process with exogenous influence
�NAARX� which is characterized by not only linear transfor-
mations of the several predictors. In different pilot studies
�1,23,28�, this model has shown its ability to reproduce the
linear and some of the nonlinear properties of the HRV, e.g.
cardiorespiratory synchronization. We propose a version of
this model where two external sources influence the heart
rate and the blood pressure, respectively. We investigate
whether this model is suitable to describe the complex dy-
namics of the heart rate as well as the systolic blood pres-
sure. Finally, we examine if the fitted models allow the de-
tection of pathological changes in cardiovascular regulation.
The paper is organized as follows. Section II A contains the
data collection and the preprocessing. In Sec. II B, we
present the nonlinear model and its nonparametric regres-
sion. All statistical tests and analytical tools used are ex-
plained in Sec. II C. In Sec. III, the results of the nonpara-
metric regression and the analysis of the model are
described. Finally, some conclusions are drawn and remarks
made in Sec. IV.
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II. METHODS

A. Data

We find a typical example of the dynamical changes of
the cardiovascular system in patients suffering from obstruc-
tive sleep apnea syndrome �OSAS�. OSAS is characterized
by repeated full or partial closure of the upper airway for
more than 10 s during sleep. This disease is associated with
a higher risk for the development of hypertension during
sleep and in the daytime �29�, or stroke �30�. It is assumed
that baroreflex �short-term influence of blood pressure on
heart rate� impairment, during the night and furthermore in
the daytime, is induced by intermittent hypoxia �decreased
oxygen saturation through apneas or hypopneas� and cause
developing hypertension �31�.

To study the influence of OSAS on cardiovascular regu-
lation, three OSAS patients with and three without hyperten-
sion �age 44�6 years� are analyzed. To better assess the
applicability of the NAARX model, a group of three healthy
persons �age 30�8 years� is also considered. The ages of the
healthy group and the groups of OSAS patients are not
matched, because our study of OSAS is just beginning, and
unfortunately there are no data from available healthy volun-
teers of comparable age. In this study, we first analyze the
cardiovascular variability under standardized conditions in
the daytime. Night time sleep stage-dependent analyses are
out of the scope of this paper and not considered here. For
each subject, an electrocardiogram �sampling rate 1000 Hz�,
continuous blood pressure �via finger cuff of Portapres de-
vice model 2, BMI-TNO, Amsterdam, The Netherlands;
sampling rate 200 Hz�, and respiration curve �via respiratory
effort sensors at the chest; sampling rate 10 Hz� are re-
corded. The persons were awake with relaxed respiration in
the supine position. This study was approved by the local
ethics committee and all volunteers and patients gave written
informal consent.

From the electrocardiogram, the times of the heart beats
are determined using appropriate algorithms �32�. Intervals
between successive heart beats ��Bi� the beat-to-beat-
interval� are calculated. The maximum blood pressure value
in each beat-to-beat interval is extracted, which leads to the
time series of systolic blood pressure on a beat-to-beat basis
��Si�, systolic blood pressure�. The values of the respiration
signal are determined at the times of the heart beats. Due to
the smaller sampling rate of the respiration signal compared
to the electrocardiogram, this determination is made by in-
terpolation. The result is a time series of respiratory move-
ment on a beat-to-beat basis ��Ri� respiration�. Artifacts
caused by, e.g., premature beats �beats not initialized by the
sinus-atrial node� are removed in �Bi� by means of an adap-
tive filter �3� �see �40�� to prevent such phenomena not origi-
nating from the autonomous heart rate regulation from influ-
encing the analysis. Parts of the considered time series are
shown in Figs. 1 and 2.

B. Modeling

We are interested in understanding short-time fluctuations
of the beat-to-beat intervals and systolic blood pressure.
Therefore, these variations are described by a discrete model

�15� to take into account the pulsing character of the heart
beat and blood pressure on a short time scale. In the cardio-
vascular system, arterial pressure fluctuations provoke
changes in afferent activity of pressure-sensitive receptors,
which lead to a change in parasympathetic and sympathetic
outflow. This activity of the vegetative nervous system gen-
erates changes in beat-to-beat intervals by the cardiac pace-
maker. In the model of the heart rate �see Eq. �1��, this so-
called baroreflex is modeled by the influence of the previous
systolic blood pressure value. Another important source of
HRV is respiration, but it is not clear yet whether this car-
diorespiratory coordination takes place directly via coupling
of the breath control center and the nervous control of the
heart rate �33� or indirectly via the baroreflex of respiratory-
induced blood pressure variations �15�. Therefore, the model
of the heart rate �see Eq. �1�� contains additionally previous
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FIG. 1. Extracted time series of the beat-to-beat intervals �Bi�,
the systolic blood pressure on a beat-to-beat basis �Si�, and the
respiratory movement on a beat-to-beat basis �Ri� of the healthy
subject H3 in supine position in the daytime.
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FIG. 2. Extracted time series of the beat-to-beat intervals �Bi�,
the systolic blood pressure on a beat-to-beat basis �Si�, and the
respiratory movement on a beat-to-beat basis �Ri� of the normoten-
sive OSAS patient P1 in supine position in the daytime.
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values of the respiration movement, in order to consider both
possible cases. Other influences, for instance temperature
and the position of the body, are reduced by the standardiza-
tion of the clinical measurement and/or considered by the
autoregressive part of the model and the noise term. On the
other hand, the decrease of the heart rate tends to increase the
next blood pressure value. This mechanism is assumed to be
partly due to the increased filling of the ventricles during a
longer beat-to-beat interval which leads to a more forceful
contraction of the myocardium �Frank-Starling mechanism�.
Therefore, the model of systolic blood pressure �see Eq. �2��
contains the previous values of the beat-to-beat interval. The
respiratory movement also influences the blood pressure, as
aforementioned, and is added to the model Eq. �2�. Another
influencing source of the BPV is the activity of the vegeta-
tive nervous system which controls the peripheral resistance
of the vessels. The sympatho-vagal relation is modeled by
previous values of the blood pressure and a noise term in the
model of BPV �see Eq. �2��. As the functional relationship of
the different cardiovascular values is not clear, we use a non-
parametric approach. This will ensure the highest possible
flexibility of the model. Other assumptions made in our
model are additivity of the influences and the whiteness of
the random disturbances. Additivity means that the indi-
vidual predictors do not interact with each other. Hence, one-
dimensional functions can be analyzed instead of multidi-
mensional ones, leading to the following model equations:

Bi = B̄ + �
j=1

p

f j�Bi−j� + gj�Si−j� + hj�Ri−j� + �i, �1�

Si = S̄ + �
j=1

q

kj�Bi−j� + lj�Si−j� + mj�Ri−j� + �i. �2�

B̄ and S̄ are the mean values of the analyzed time series �Bi�
and �Si�. i ranges from p+1 and q+1, respectively, to N
�length of the time series�. p and q denote the orders of the
two autoregressive processes. f j, gj, hj, kj, lj, and mj are
transformations of the predictors of the models which stand
for the weighted portions of the fluctuations in the response
variable. ��i� and ��i� are realizations of white noise pro-
cesses.

This model Eqs. �1� and �2� is fitted nonparametrically
using an iterative least-squares algorithm �34�, which is
called BACKFIT �see Appendix A�. A similar procedure, the
alternating conditional expectation algorithm, was success-
fully used for additive nonparametric reconstruction of dy-
namical systems �35,36�. In contrast to BACKFIT, this algo-
rithm includes a transformation of the response variable.
BACKFIT is carried out separately for �Bi� and �Si� �see Eqs.
�1� and �2��. Hence, the predictors Si−j and Ri−j are external
influences in Eq. �1�. The same applies to Bi−j and Ri−j in Eq.
�2�. BACKFIT uses a nonparametric regression called running
line which is a piecewise linear regression. For this kind of
smoothing, asymptotic studies yielded an optimum window
width of size N4/5 �34� which is used in this study as well.
Smaller window widths lead to noisy functions which are
difficult to explain. On the other hand, for greater window

sizes, the bias of the estimated transformation dominates.
The nonlinear models �Eqs. �1� and �2�� are estimated for

selected parts of the time series with a length of 200 sample
points. This selection reduces trends and excludes nonsta-
tionarities in order to guarantee reliable results.

C. Testing

The reliability of the nonlinear shapes of transformations
is checked. Therefore, measurements are split into disjoint
parts of equal length. If stable cardiovascular regulation is
assumed during the measurement, then it is expected that the
estimated transformations are quite similar in the different
parts. Comparison of the transformations in the different
parts will show if the nonlinear shape is reproducible.

The order of the model is determined by a stepwise in-
crease. We study whether the standard deviation of the resi-
due has decreased significantly compared to the previous or-
der. If the standard deviation of the residue is not smaller
than 90% of the one in the previous step, then the algorithm
is stopped and the order of the previous step is used for
modeling.

For comparison, linear autoregressive models with exter-
nal influences �ARX� are also considered �see Eqs. �3� and
�4��:

Bi = B̄ + �
j=1

p

ajBi−j + bjSi−j + cjRi−j + �i�, �3�

Si = S̄ + �
j=1

q

rjBi−j + sjSi−j + tjRi−j + �i�. �4�

Here aj, bj, cj, rj, sj, and tj are the coefficients of the respec-
tive predictors and i ranges from p+1 and q+1, respectively,
to N, where p ,q denote the orders of the two autoregressive

processes. B̄ and S̄ are the mean values of the analyzed time
series �Bi� and �Si�. ��i�� and ��i�� denote realizations of white
noises. The linear models in Eqs. �3� and �4� are fitted using
the MATLAB system identification toolbox �41�. A residual
analysis will show whether the NAARX model �Eqs. �1� and
�2�� is suited for describing the observed HRV and BPV.

Using the Lagrange multiplier test, it is checked whether
additivity of the effects in the model is justified �see Appen-
dix B�. This test is performed for both the fitted NAARX
�Eqs. �1� and �2�� and ARX models �Eqs. �3� and �4��. When
the test is applied to the ARX model �Eqs. �3� and �4��, the
smoothing parameter of the running line in backfitting �see
Appendix A� is set to N, the number of random samples, in
order to obtain a linear regression over the entire random
sample.

Using the Kolmogorov-Smirnov test, it is checked
whether the residues are normally distributed with the same
mean and variance. Analysis of the autocorrelation function
from lag 1 to 10 is supposed to indicate whether the residues
may be considered as realizations of independent random
variables. Only the first ten lags are studied, as only short-
term fluctuations are modeled here. Using an ensemble of
200 simulations of a white noise process, a local confidence
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interval of 99% is estimated for the autocorrelation function.
For each lag, the upper and lower boundaries of the interval
are determined within which 99% of the autocorrelation
functions of the ensemble members are ranged. By averaging
the upper and lower limits of all ten lags, the confidence
limits are obtained. The interval plotted versus the lags rep-
resents the confidence band of the autocorrelation function.
If the autocorrelation of the individual lags is within this
band, the residues may be considered as random. In the case
that the autocorrelation of one or several lags is located out-
side the band, a significant paired dependence of the random
variables in ��i� ���i�� �Eqs. �1� and �2�� has to be assumed.

Apart from testing the model assumptions, we check
whether the additional expenditure needed for estimating the
nonlinear model compared to the linear one is justified. The
value of the coefficient of determination Eq. �5� for the
NAARX model �Eqs. �1� and �2�� is compared to that for the
linear case. The coefficient of determination R2 is defined as

R2 =
s2 − sres

2

s2 , �5�

where s2 and sres
2 represent the estimated variance of the

modeled variables and the residue. The improvement of the
nonlinear approach is also checked by means of an approxi-
mated F test �see Appendix A�. The null hypothesis of this
test is that the fit of the nonlinear model does not represent
any significant improvement compared to the linear fit.

For comparison of the linear and nonlinear models, their
simulations are also studied. The standard deviation of the
random numbers used for this purpose is determined by
means of the robust estimator of the mean absolute deviation
as follows:

s* = median���xi − x̂��� , �6�

where i ranges from 1 to the number of random samples N.
��xi− x̂�� is the set of residues of the regression analyzed. This
robust estimator is used, as outliers appear that falsify the
estimation of the standard deviation. To ensure the stability
of the NAARX model �Eqs. �1� and �2��, the transformations
are continued constantly from the boundary points. Newly
generated values are transformed by a nearest-neighbor in-
terpolation. As the fits of the NAARX �Eqs. �1� and �2�� and
ARX �Eqs. �3� and �4�� models to �Bi� and �Si� take place
separately, the simulations of these models are also made
separately. In the simulations, the original values of the ex-
ternal influences are used. 200 simulations each are gener-
ated for the fitted ARX and NAARX models. From these
simulations, the confidence bands of the modeled variability
are estimated. For each index point, the interval containing
95% of the simulations is searched for. The original time
series of the response variable is compared to this confidence
band.

III. RESULTS

The fitted NAARX model �Eqs. �1� and �2�� is determined
by the estimated transformations of the predictors. A fitted
nonlinear model of heart rate fluctuation �see Fig. 1� is

shown in Fig. 3. Each curve shows the effect on the beat-to-
beat interval of the predictor values. These functions take
indeed a nonlinear shape and are distinguishable clearly from
a straight line.

The number of previous values necessary to describe
short-term fluctuations of �Bi� and �Si� is determined auto-
matically. It is the order of the model �p ,q in Eqs. �1�–�4��,
which varies from 1 to 3 �Table I�. Only for one case is the
value 5, which can be considered as an outlier and results
from long-term fluctuations. The comparison of the orders
shows the tendency for higher values in the OSAS groups.

We check whether the nonlinear forms of the transforma-
tions are reproducible or must be considered as a random
effect. Therefore, the measurements are split into disjoint
parts of equal length. If it is assumed that the described regu-
lation of the cardiovascular system is stable during the mea-
surement, we expect quite similar curves of the NAARX
model �Eqs. �1� and �2�� for the different parts. The resulting
curves are shown in Fig. 4 for instance. The horizontal shifts
of the functions result from different mean values of the
predictor in the different parts; however, the qualitative
shape is unchanged. These findings are confirmed for all con-
sidered measurements.

TABLE I. Orders determined automatically for the NAARX
model of Eqs. �1� and �2� of the time series �Bi� and �Si� of the
subjects.

Group Subject p q

Healthy subjects H1 2 2

H2 2 2

H3 1 1

Hypertensive OSAS patients P2 3 3

P3 2 2

P6 2 5

Normotensive OSAS patients P1 3 2

P4 1 3

P5 2 1
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FIG. 3. Estimated transformations of the NAARX model of Eq.
�1� to describe the heart rate time series �Bi� in Fig. 1.
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The capability of the NAARX model �Eqs. �1� and �2�� to
describe HRV and BPV is checked by testing its assump-
tions. The most important constraint is the additivity of the
transformed predictors. It is checked by means of a statistical
test �see Appendix B�. In only three of 18 cases the additivity
must be rejected �p�0.01, see Table II�. These rejections are
not accumulated in any group of the subjects or the models
of �Bi� and �Si�. Therefore, these cases are considered as an
effect of multiple testing where the type-1 error of the test
leads to false rejections. However, for the linear ARX model
�Eqs. �3� and �4��, there are ten rejections of 18 cases, in-
cluding all cases of the healthy group.

The second assumption of the NAARX model �Eqs. �1�
and �2�� is the whiteness of the random terms which we also
check. Therefore, the residue must be realizations of identi-
cally normal distributed paired independent random vari-
ables. The Kolmogorov-Smirnov test is used to verify this

condition of normal distributions. By means of this test, we
can confirm this condition in all cases.

The paired independence of the random variables ��i� and
��i� �Eq. �1� and Eq. �2�� is checked by means of the auto-
correlations of the residue �Sec. II B�. There are significant
autocorrelated residues of the NAARX model �Eqs. �1� and
�2�� in six of 18 cases �see Table III�. For the linear ARX
model �Eqs. �3� and �4��, there are 11 rejections of the paired
independence, which are concentrated in the healthy group
as well as in the nonlinear model.

The values of R2, the coefficients of determination �Eq.
�5��, of the linear and nonlinear fits are compared in order to
determine whether the additional expenditure needed for es-
timating the nonlinear model is justified �see Table IV�. In all
cases, R2 is greater in the NAARX model �Eqs. �1� and �2��
than in the linear one. A Wilcoxon sign test for paired
samples confirms a significant increase of the explained vari-
ance using the NAARX model �p�0.01�. The approximated
F tests of nonlinearity show that in 16 of 18 cases the non-
linear approach is necessary to describe the short-time fluc-
tuation of heart rate and systolic blood pressure �Table V�.

For another way to verify the improvement via the
NAARX model �Eqs. �1� and �2��, simulations of the fitted
model are studied. An ensemble of 200 realizations is com-
pared to the original time series. Examples of such compari-
son are presented in Fig. 5. The thin lines mark the upper and
lower boundaries of a band that includes 95% of the 200
simulated time series. The original series is drawn by a bold
line. In the case of the linear ARX simulations, there are
delays of the low-frequency oscillations between simulations
and the original series which is illustrated by marked local
maxima �vertical lines�. These delays occur because the
trivial fit, the current value is equal to its predecessor, domi-
nates the linear model. In the case of the fitted nonlinear
model �Eqs. �1� and �2�� these delays do not occur. After
distinctive disturbances or changing of the dynamic in the
time series, simulations of the linear model show transient

TABLE II. Decision of the additivity test �see Appendix B� for
ARX �Eqs. �3� and �4�� and NAARX �Eqs. �1� and �2�� fits to �Bi�
and �Si�. � labels rejection of assumed additivity. In the cases
marked by a dash the hypothesis of additivity can hold. The signifi-
cance level is 1%.

Group Subject

ARX NAARX

�Bi� �Si� �Bi� �Si�

Healthy H1 � � — —

H2 � � � —

H3 � � — —

Hypertensive OSAS patients P2 — — — —

P3 — — — —

P6 � �—a� � �—a�
Normotensive OSAS patients P1 — � — —

P4 — — — —

P5 � � — �

aLinear regression within test was ill conditioned.

TABLE III. Decision obtained by comparing the empirical 99%
confidence interval �−0.175,0.175� with the autocorrelation func-
tions of the residues of the ARX �Eqs. �3� and �4�� and NAARX
�Eqs. �1� and �2�� fits to �Bi� and �Si�. If the autocorrelation of one
or several lags is located outside the interval, the autocorrelation is
considered to be significant ���. Otherwise no significant autocorre-
lation is labeled by a dash.

Group Subject

ARX NAARX

�Bi� �Si� �Bi� �Si�

Healthy H1 � — — —

H2 � � � �

H3 � � � �

Hypertensive OSAS patients P2 — — � —

P3 — � — —

P6 � — — —

Normotensive OSAS patients P1 — � � —

P4 � � — —

P5 — � — —
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FIG. 4. Estimations of f1 for successive intervals in time series
of healthy person H3. Estimations of intervals with remarkable
trends and other nonstationarities are excluded.
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behavior �framed in Fig. 5�. In the group of healthy people,
simulations of the linearly modeled systolic blood pressure
diverge �Fig. 5�.

IV. SUMMARY AND DISCUSSION

This study shows that the proposed nonlinear model �Eqs.
�1� and �2�� is capable of describing short-term fluctuations
in heart rate and systolic blood pressure signals significantly
better than the linear approximation, which confirms the as-
sumption of nonlinearly controlled heart rate and blood pres-
sure. Additionally, we see a respiratory influence of the heart
rate in a direct as well as indirect �via blood pressure fluc-
tuation� fashion �see Fig. 3, right side�. Furthermore, the
comparison of the nonlinear model �Eqs. �1� and �2�� with
the corresponding linear approximation reveals that HRV and
BPV in healthy subjects are caused by a higher level of noise
as well as nonlinearity than in patients suffering from OSAS.
The residue analysis points to a further source of heart rate
and blood pressure variability in healthy subjects, in addition
to heart rate, systolic blood pressure, and respiration.

The nonparametric fit of the NAARX model �Eqs. �1� and
�2�� reveals the nonlinear character of the coupling between

the heart rate, systolic blood pressure, and respiratory move-
ment. Obviously the shapes of the functional relations are
nonlinear �see Fig. 3�. To quantify these forms, a parametri-
zation by means of piecewise linear functions or higher-order
polynomials is appropriate. The reliability analysis of the
fitted NAARX model �Eqs. �1� and �2�� shows that the non-

TABLE IV. Coefficients of determination R2 of the NAARX �Eqs. �1� and �2�� and ARX �Eqs. �3� and �4��
models fitted to �Bi� and �Si�. For paired random samples, the coefficients of determination of both model fits
�Wilcoxon sign test� differ significantly: p�0.01.

Group Subject

R2�NAARX� R2�ARX�

�Bi� �Si� �Bi� �Si�

Healthy H1 0.610 0.825 0.402 0.751

H2 0.641 0.958 0.522 0.927

H3 0.770 0.958 0.716 0.932

Hypertensive OSAS patients P2 0.711 0.901 0.643 0.857

P3 0.947 0.933 0.945 0.921

P6 0.875 0.930 0.847 0.890

Normotensive OSAS patients P1 0.944 0.872 0.933 0.832

P4 0.868 0.844 0.864 0.748

P5 0.909 0.651 0.890 0.527

TABLE V. Decision of the significance test for nonlinearity�34�
for the NAARX fits �Eqs. �1� and �2��. The asterisk tables signifi-
cant nonlinear properties.

Group Subject Bi NAARX Si NAARX

Healthy H1 � �

H2 � �

H3 � �

Hypertensive OSAS subjects P2 � �

P3 — �

P6 � �

Normotensive OSAS patients P1 � �

P4 — �

P5 � �
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FIG. 5. Comparison of simulations from NAARX �Eqs. �1� and
�2�� �a� and ARX �Eqs. �3� and �4�� �b� models for normotensive
and hypertensive OSAS patient as well as a healthy subject. Origi-
nal time series Bi and Si plotted as bold lines. The thin lines show
the local boundaries of the 95% confidence band which is estimated
by 200 simulations. Significant delays of the slow oscillation be-
tween the original signal and the confidence band of the ARX
model are marked by vertical lines located at the local maximum
values. The rectangles mark periods of relaxation in the linear simu-
lation. The simulations of Si in the healthy subject diverge for the
linear model �b�. �Standard deviation used by simulation is �top�
�NAARX�Bi�=5.2, �ARX�Bi�=5.6, �NAARX�Si�=3.1 and �ARX�Si�
=3.5; �middle� �NAARX�Bi�=2.1, �ARX�Bi�=2.2, �NAARX�Si�=1.6,
and �ARX�Si�=1.7; �bottom� �NAARX�Bi�=32.9, �ARX�Bi�=40.7,
�NAARX�Si�=0.9, and �ARX�Si�=1.1�.
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linear shape of the transformations is reproducible if nonsta-
tionarities are excluded from the fit �see Fig. 4�. The hori-
zontal shift of the transformations in Fig. 4 results from
different mean values of the corresponding predictor; how-
ever, the shape is mainly unchanged. These facts indicate
that the nonlinear character of the short-term regulation in
the cardiovascular system is preserved over a wide range of
the mean predictor value. There is a clear direct influence of
the respiration on the heart rate �see Fig. 3, right side�. An
indirect control via blood pressure fluctuations cannot be ex-
cluded. We assume that both couplings coexist. The orders p
and q tend to higher values in the OSAS groups, which is
interpreted as a loss of short-term fluctuations and the in-
creased importance of slower oscillations.

The validity of the NAARX model �Eqs. �1� and �2�� is
checked in order to determine whether or not it is suited for
describing HRV and BPV. In the case of NAARX modeling,
the rejections of additive predictors �asterisks in Table II� are
not restricted to a particular group of �Bi� and �Si�; they may
be interpreted as random phenomena caused by multiple test-
ing. Therefore, the most important property is justified in the
fitted NAARX model, but fails in many cases of the fitted
comparable linear process �see Table II� where the rejections
accumulate in the healthy group, because the high level of
nonlinear behavior is partly masked as a nonadditive feature.
With the proof of additivity a separate analysis of the differ-
ent couplings between the heart rate, systolic blood pressure,
and respiratory movement is possible.

The other assumption of the model, the whiteness of the
random term, is satisfied in most of the OSAS patients. Al-
though the normal distribution of the residue is satisfied in
all considered cases, there are significant paired autocorrela-
tions of the residues for nearly all healthy persons. Hence,
the autocorrelation reflects missing predictors, e.g., the dias-
tolic blood pressure or the oxygen saturation of blood, which
must also be considered in the models of heart rate and blood
pressure control in healthy subjects. The residue may also be
explained by a moving average process. There is no correla-
tion between the predictors and residue; therefore such cor-
rection does not lead to a change in the estimated transfor-
mations. Thus this modification is not necessary in terms of
analysis of interactions between the considered cardiovascu-
lar values.

The values of R2 in Table IV and the simulations show
that most of the variance of the original time series can be
described by the proposed nonlinear model. The comparison
with the corresponding linear model yields a significant im-
provement of the described variance, which is highest for the
healthy person, because the nonlinear deterministic behavior
is masked partly as random effects in the linear model. It
should be noted that the values of R2 for OSAS patients are
visibly smaller than for the healthy persons, which confirms
the experience that the heart rate of healthy subjects is more
stochastic than in people suffering from cardiovascular dis-
eases.

The most important limitation of our model is the open
loop approach which can lead to cross correlations between
the residues of the fits on �Bi� and �Si�. Another constraint is
the necessity for the same order of autoregressive term and
the external inputs, where the determination of the order is

sensitive to long-term correlations in the different signals.
In order to show the diagnostic relevance of our approach,

the fitted NAARX model �Eqs. �1� and �2�� results are com-
pared inside the different groups of subjects and among
them. Therefore, the nonlinear model of order 2 is recalcu-
lated for each subject in order to get comparable results. For
these fits, g1 and g2, the transformations of the first and sec-
ond predecessor values of blood pressure in Eq. �1�, are
drawn in Fig. 6. The examples in Fig. 6 reveal that pro-
nounced group-specific properties exist. The slope of the
transformation g1 is remarkably smaller in the normotensive
OSAS patients than in the healthy persons, which corre-
sponds to a decreased influence of the systolic blood pressure
on the beat-to-beat interval. The changed monotony of this
transformation in the group of hypertensive OSAS patients
characterizes the pathological regulation of the blood pres-
sure. Therefore, the near-zero slope of g1 seems to indicate
an increased risk for hypertension evoked by the OSAS
which demonstrates a possible kind of model-based diag-
noses �37�. To validate this guess, more cases must be stud-
ied.

The nonlinear shapes of the estimated transformations in
the fitted NAARX model �e.g., sharp bends of the transfor-
mations� point to different regimes in the cardiovascular
regulation. The parametrization of these forms with piece-
wise linear functions leads to threshold autoregressive mod-
els which are able to generate nonlinear phenomena, e.g.,
amplitude-frequency coupling or synchronization, in combi-
nation with external excitation �38�. These phenomena are
also found in signals of heart rate and respiratory movement
during sleep. Therefore, we hope to describe the complex
cardiovascular regulation in sleep, e.g., synchronization be-
tween respiration and heart rate or the resetting of the barore-
flex, as well.

Finally, the results of the nonlinearity and additivity tests
demonstrate the superiority of our nonlinear data-driven
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FIG. 6. Transformations of the NAARX model �Eqs. �1� and
�2�� of order 2 fitted to the time series �Bi�. The columns summarize
the transformations of the predictors Si−1 and Si−2 for the subjects of
a group. The different persons in the group are given the symbols �
�light�, �, and � �dark�.
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modeling approach over linear ones. Moreover, the fact that
we are able to discriminate different patient groups may en-
able an applicability for clinical OSAS risk stratification.
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APPENDIX A: FITTING OF ADDITIVE MODELS

The additive model is defined by

Y = C + �
j=1

p

f j�Xj� + � , �A1�

where C is a constant value. Xj is the jth predictor, having
the effect f j�Xj� on the influencing variable Y. � is an
N�0,�2� distributed random variable that is stochastically in-
dependent of the predictors. If the assumptions for Eq. �A1�
are correct, then for any k

E	Y − � − �
j�k

p

f j�Xj��Xk
 = fk�Xk� . �A2�

By backfitting, the transformations fk�Xk� are estimated as
follows.

�1� Set C to the mean value of Y and choose the starting
values of the transformations f j

0.
�2� For each j, a nonparametric regression of the partial

residue is made over the values of the jth predictor �estima-
tion of Eq. �A2��:

f j
� = Sj	y� − C − �

k�j

p

fk
� �xj

�
 . �A3�

Here, Sj is a scatter plot smoother �like a running mean,
running line regression, or kernel estimator� for the jth pre-

dictor. �y� ,x1
� , . . . ,xp

� � is a multivariate time series of the ran-

dom variables Y ,X1 , . . . ,Xp. fk
� are the transformed values of

the kth predictor.
�3� Continue with step 2 until the estimated transforma-

tions no longer change.
For details we refer to p. 82 in Ref. �34�.
An approximate F test is used to answer the question

whether the estimated transformation is linear or not. There-
fore nonparametric fitting is compared to a linear model. The
predictors Xj are the same in both cases. slin and snlin are the
sums of the squared errors of the fitted linear model and the
nonparametric regression. Under the zero hypothesis, i.e., es-
timated transformations of nonparametric regression are lin-
ear, the following approximation holds:

F =
�slin − snlin�/�	nlin − 	lin�

snlin/�N − 	nlin�
. �A4�

F is approximately an F�	nlin−	lin ,N−	nlin� distributed
random variable. N is the sample number. 	lin and 	nlin are
the degrees of freedom of the fitted linear model and non-
parametric regression. They can be estimated as follows.
When linear smoothers are used, e.g., running line regres-

sion, smoothing may be described by a smoothing matrix Ŝ.

fy
�̂ =Sx̂y� holds, where y� is the sample of the response variable

and fy
� the nonparametric regression of Y on X. Based on

these matrices, the degrees of freedom of the nonparametric
regression can be estimated by

	 = �
j

tr�2Sj
̂ − Sj

̂Sj
̂T� − 1, �A5�

where tr�X� denotes the trace of the matrix X and XT is the
transpose of the matrix. The zero hypothesis must be rejected
if the value of F is smaller than the quantile of the distribu-
tion F�	nlin−	lin ,N−	nlin� with probability 1−� �� is the
significance level of the test�.

For this test, there is no exact calculation of the distribu-
tion of the test statistics. Simulations have shown, however,
that it may be used as a rough guideline. For details we refer
to p. 65 in Ref. �34�.

APPENDIX B: ADDITIVITY TEST

It is assumed that yi is a realization of a stochastic pro-
cess, which is stationary and ergodic. According to the zero
hypothesis, the time series is based on the nonparametric
regression of

yi = � + �
j=1

p

�f j�yi−j�� + �
j=1

q

�gj�xi−j�� + �i. �B1�

The alternative is

yi = h�yi−1, . . . ,yi−p,xi−1, . . . ,xi−q� + �i. �B2�

The test is carried out as follows.
�1� The additive model from the zero hypothesis is fitted

to the data by backfitting. The residues �i
ˆ of this regression

are determined.
�2� Using backfitting, the nonparametric regression of the

cross products of second and third order of the predictors is
determined over yi−1 , . . . ,yi−p ,xi−1 , . . . ,xi−q. The cross prod-
ucts that consist of powers of a predictor only are not con-
sidered. For each of the K possible backfittings, the residue ei
is calculated.

�3� The linear regression of �i
ˆ over ei

1 , . . . ,ei
K is deter-

mined. The test statistics NR2 with the sample number N and
the coefficient of determination of the regression R2 �Eq. �5��
are determined.

These test statistics are asymptotically 
2 distributed with
K degrees of freedom. The assumption of additivity must be
rejected if the value of the test statistic is smaller than the
quantile of the distribution 
2�K� with probability 1−� �� is
the significance level of the test�. Details can be found in
�39�.
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